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1 Introduction

This final report presents the results of an almost four year effort on finite element modeling
of the static and dynamic behavior of anisotropic materials with particular emphasis on
single crystal alloys used in the manufacturing of high-performance turbine blades. This
effort was motivated by a lack of finite element software capable of representing stress and
strain as second order tensors.

During the course of the project, various formulations for two— and three-dimensional
hybrid finite elements were developed and implemented into the SPAR finite element code.
These formulations were tested and compared with displacement-based approaches for both
static and dynamic problems.

In an extension of the original statement of work, a sensitivity analysis of experimental
results for anisotropic materials subject to misalignments and other errors was conducted.
As a results of this study, a formulation, numerical procedure, and computer software were
developed for the calculation of material constants for anisotropic materials and, moreover,
for the optimization of strain gauge and material axis orientations of tensile test specimens
for highly anisotropic materials. Moreover, as an additional task. a similar procedure and
software were developed for the evaluation of stresses by means of strain measurements and
for the optimization of the orientation of strain gauges in this case.

This report presents a summary of the technical effort over the course of this project.
The report is divided into several sections: In Section 2, general hybrid finite element for-
mulations are studied. Then, in Section 3, two—dimensional finite elements based on hybrid
formulations are developed and tested numerically. In the next section, a dynamic analysis,
using hybrid finite elements is discussed. This analysis is followed by the formulation of
three—dimensional hybrid finite elements (Section 5). In Section 6, alternate hybrid stress el-
ements are studied and verified numerically. As a conclusion of the theoretical developments
presented, several numerical examples cases for the SSME turbine blades are presented in
Section 7. This section is followed by the formulation of numerical procedures for the op-
timization of the orientation of material axes and strain gauges in experimental tests for
anisotropic materials (Section 8). Several numerical examples are presented to illustrate the
performance of the procedure.

In the appendices, updates to the SPAR code manual are presented. In four separate
volumes, theory and user’s manuals for the two experiment optimization codes—OPTAM-C

and OPTAM-S—are included.



2 General Hybrid Element Formulation

2.1 Introduction

This project began with the study of a variety of methods for modeling vibrations of
anisotropic elastic blades with particular emphasis given to hybrid finite element formulations
and the feasibility of using helical shell elements. Apparently, some authors have attempted
to model isotropic curvilinear turbine blades using shell elements of variable thickness based
on a shell theory for surfaces generated along a helix. One advantage in this approach is
that models with relatively few degrees of freedom can yield quite acceptable results. A
disadvantage, of course, is the limited flexibility inherent in shell models for capturing the
effects of boundary conditions, three-dimensional stress states, etc.

Several alternative hybrid element formulations were investigated. Purely qualitative
studies were made, the objective being to assess a priori properties of various elements with
regard to

1. accuracy in computing stresses
2. ease in handling anisotropic properties
3. numerical stability in the presence of strong anisotropy

4. compatibility with the SPAR code structure

The basic formulation which generated interest is that which yields a hybrid element
from assumed displacement fields. Starting with the principle of minimum potential energy
with displacement continuity conditions as constraints, the boundary tractions then appear
as Lagrange multipliers. The resulting functional is of the form

r=Y {/V Gcﬁkleij(u)ekz(u) - Fivi) v — /avl Touids + T,-u,-ds} (2.1)

av?e

Here standard notation is used: V, is a typical element. Ciji are the elastic constants,
gi; the strains, F; the body forces, T; the prescribed tractions on 8V, and u; the prescribed
displacements on 9V,,, where the T} in this integral are the Lagrange multipliers.

Approximations take the form
= A8, T = dq (2.2)
where 3 and ¢ are vectors of undetermined parameters. The strains are then

c= B3 (2.3)
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Denoting

H, = /V BTCBdV H,= /V ATFdV

(2.4)
Hy = / ATédV  H, = / uT $dV
3Vle 2e
a minimization of 7 yields
6 = Hl—l(ng + Hg) (25)
Hence,
1
m=5> (¢ F.g—2U]q) (2.6)
where
F, = HJ(H ") Hy
(2.7)

D’e = HQTH{_TH3 + [{4

Equilibrium and continuity of interelement displacements is achieved in the discrete model
whenever

Feq - Ue (28)
The hybrid element stiffness matrix is then

K =F! (2.9)

e

Hybrid element formulation

Six stress and displacement type elements were chosen for studies of stress accuracy and
utility in vibrational analysis. Two separate finite element formulations were chosen.

1. Hellinger-Reissner Formulation

The functional which assumes a stationary value is given by:

1
T = / [-——O’TSO' + JT(Du)] dv — TT(u —u)ds (2.10)
vi 2 av
Here o is the vector of stress components, D is the differential operator defining the strain-
displacement relations (¢ = Du), with u the displacement vector, and T the boundary
traction.

The.displacements u are not assumed to be compatible and the equilibrium equations
are not satisfied identically but are brought in as constraints, so that the elements are more
“flexible” and the number of stress terms required to suppress zero-energy modes is reduced.
The elements also becomes less sensitive to changes in the reference coordinates [12].



The strain—displacement relation is given by

e = Du

(2.11)

where the displacement u consists of a compatible part u, and an incompatible part u,,

which could be a bubble function vanishing on the boundary.

Now,

T _ T _\T T
/Va (Du,)dV = /V(D ) uadV+/8V(Na) uads

(2.12)

where No is the trace of o on the boundary, N being a matrix of direction cosines of the

unit exterior normal to V. Thus, if we set u, = u —u and No = T, we have,

1
T = /v [—EJTSO' +oT(Du.) — (DTU)Tua} dVv

We see that the equilibrium equations

DTec =0

appear as a constraint with the u, being the Lagrange multiplier.

In the finite element implementation. we assume

oc=P3
where
Cy
N
and C,’s are row vectors.
Also, let
u. = Ngq
and
u, = LA

from which

Du,=Bq (B=DN)

and

DTs=EB (E=DTP)

so that |
T = —3ﬁTHﬂ +8TGq — BTRA

(2.13)



where

H=[ PTSPdV
Y (2.22)
G= [ PTBaV
1%
and
Ry = / ETLdV (2.23)
v
Finding the first variation of 7, with respect to 3 and A, we get
8= HYGq— RiA) (2.24)
and
RT3 =0 (2.25)

Now, the strain energy as expressed in terms of a stiffness matrix A and the generalized
coordinates ¢ is given by

U= %qTKq
5 9
; 1l o To . (2.26)
U= —gledV = —/ o' SodV
v 2 20y

Eliminating A from equations (2.24) and (2.25), substituting 3 into the expression In
equation (2.26) which becomes

U= 3,3TH;8 (2.27)
gives
K =GTMG - GTMR,(RTMR,)"'R{ MG (2.28)
where
M=HT (2.29)

The inversion of H becomes easier if the same C;’s are used for all of the normal stress
components. For example, in the case of a three-dimensional isotropic solid, when the stress



terms are not coupled,

[ 3} —vdy —vé ]
-V ¢1 —vé 0
—v$y —vo o3}
H=1/E (2.30)
2(1+v)os
0 2(1 4 v)¢s
L 2(1 + V)QBG )
where
gz’),':/vPiTPidV (2.31)

H can be easily inverted.
2. Hu-Washizu Formulation

Another approach to the development of mixed elements is to use the extended variational
principle of Hu and Washizu. The Hu-Washizu variational functional is given by:

1 -~
THW = / [35TC€ ~ole+ UT(DU)] dv — [ TT(u—u)dS (2.32)
Vi Jov
where
C=5" (2.33)

and the independent variables are the stresses o, the strains ¢, element displacements u. and
boundary displacements u.

In the finite element formulation, both ¢ and ¢ are approximated by the same shape
function:

o=Pj (2.34)
and
e = Pa (2.35)
The strain energy is then
U=/ L oTeqy = %BTAQ (2.36)
where )
B,
a=| B (2.37)



and

B = /V PTP4V (2.38)

The best choice for the reference coordinates should be such that the B;’s are diagonal
matrices and the inversion of H becomes easy.

Using the same approximation for u as in equations (2.17) and (2.18) and following a
similar line of logic results in the following:

1
maw = ol Ja - 8T Aa + 87Gq — 3T RiA (2.39)

where

J= / PTC PV (2.40)
v
Setting the first variation of gy with respect to 3 and «a to zero gives
"4& = Gq - Rlz\ (241)

and
Ja=3TA (2.42)

Substituting the expression for a from equation (2.41) and (2.42) into the strain energy
solution (2.36),
KN =G"MG - GTMR(RTMR)'RTMG (2.43)

where

M=A"174"" (2.44)

Although the finite element formulation using the Hu-Washizu functional exists, all ap-
plications are derived with regards to shell/plate theory rather than analysis of continua.

Pian [15] has worked out solutions for three-dimensional brick elements using the mod-
ified Reissner principle. He has analyzed the 8 node hexahedral solid and the 20 node
hexahedral solid.

Hybrid Element Shortcomings

Stress-hybrid elements possess some shortcomings which must be overcome in order for them
to be useful. The first major shortcoming of hybrid stress elements is that they can possess
zero energy modes which can have debilitating effects on eigenvalue problems. Babuska,
Oden, and Lee (CMAME, 1978) have shown that such methods are stable and convergent
only if a global LBB-condition is statisfied, i.e., conditions of the type

Nuds|
al[|A]]] € sup =2¥——r (2.45)
u [u]lx



where A is a multiplier on the constraint of continuity of displacements u across (interelement)
boundaries and ||| - |||, |] - [l are appropriate norms (for details, see [12]). If the constant &
is equal to zero, the method is rank deficient and spurious modes exist. If @ is a function of
mesh size h, the solution may be numerically unstable and its quality may deteriorate with
mesh refinement.

To overcome this problem, the method must possess an LBB-parameter
0 < a = constant independent of A (2.46)

A quick check for a necessary condition for stability is to calculate the rank of the matrix
associated with the constraint term (e.g., § Auds). For the Hellinger-Reissner formulation
zero energy modes may normally be suppressed when the number of stress terms is equal
to or larger than the total degrees of freedom minus the number of rigid body degrees of
freedom. However, these stress terms must be chosen carefully because they do not all
contribute to the suppression of zero energy modes.

For the Hu-Washizu formulation, in the eight node solid, the minimum number of stress
terms required to eliminate zero—energy modes is (8 x 3 — 6 = 18). Using these terms, 1.e.,

o, = B+ 08w+ B3z + Bsy=

T’Iy = ﬂ13+,814z
Ty. + 815 + e

T.. = Pir+ Bisy

the bending of a beam was analyzed, and the results were not good.

If, however, the stresses were to be decoupled as suggested, additional terms would be
required to eliminate the zero—energy modes, in fact, 21 #’s would be necessary.

By using three internal displacement parameters (X’s), the number of B’s may be reduced
to 18. Results obtained with this formulation were quite good.

For two—dimensional problems, especially plane stress, Spilker [24] has shown the merits
of an eight noded quadrilateral with complete stress terms. His paper also considers 4-noded
quadrilaterals, using 3 B’s for the stress terms and a bilinear displacement approximation.
Although the results were good, the element was sensitive to changes in the reference coor-
dinates.

The second major shortcoming for hybrid stress elements is that these elements may yield
stiffness matrices that are not invariant under a change in local coordinate systems. Indeed,

8



the original Pian-hybrid-stress element (now in SPAR) can yield severely different stresses
when simple changes in the local coordinate system occur.

Invariance of the stiffness matrices may be guaranteed by introducing appropriate “bubble
functions” which serve as multipliers on the equilibrium constraint,

Do =0 (2.48)

Completeness in all modes of the polynomial expansion is also important, to ensure
invariance with respect to the chosen reference coordinates. Another method of achieving
invariance is to use local coordinates.

In the modified Hellinger-Reissner formulation, the equilibrium equations are introduced
as a constraint and do not have to be satisfied pointwise. The degree of satisfaction depends
on the number of internal displacement parameters A that are used.

The third and one of the most serious shortcomings of stress—hybrid elements is that. in
their present form, they are incapable of yielding a consistent approximation of the kinetic
energy in an element. This is a deficiency often “swept under the rug” in discussions of
applications of hybrid elements to problems of structural vibrations. Traditionally, mass
matrices are calculated using displacement or velocity approximations which are completely
independent of those used for (or resulting from) calculations of the element stiffness matri-
ces. To overcome this deficiency, it has been observed that the kinetic energy in a body
can be written . )

= [ 2ptdv = / 52V (2.49)
v 2 v 2p
where p is the mass density and p is the momentum. The momentum is related to the stress
by
p=DTo (2.50)

Hence, it may be possible to define a “consistent approximation” of the kinetic energy which
should produce more accurate approximations of mode shapes and frequencies.






3 Two—Dimensional Element Definition

3.1 Definition of Element Matrices

Using the Hellinger Reissner formulation and introducing the equilibrium conditions as a
constraint into the complementary energy functional and modifying produces the following
functional:

Vn aVn

T = 9 {% /vn ocTSodV — oT(Du)dV + uTTds} (3.1)

where o,u are the stress and displacement vectors, S is the compliance matrix, D is the
differential operator, V, is the volume of the nth element, and T is the prescribed stress on
the boundary S, .

The stresses are interpolated in terms of the stress parameters § and the polynomial
shape functions P, 1.e.,

o =Pj3 (3.2)

so that equilibrium is satisfied, i.e.,
DTo =0 (3.3)

For isoparametric elements,

T = Z Ni(&,n,¢)z;

¥y = Z ‘Ni({anag)yi (34)

£ = Z A”Vi(é‘vnag)zi

where (£,71,¢) form the parent plane and N;(£,7,<) are the appropriate shape functions.

The displacements are interpolated in terms of the shape functions as

u=N(,n,¢)q (3.5)

where ¢ are the element nodal displacements.

Then the strain is given by
1
e =Du=B(,n5)q= I—j—lB"(f,n,c)q (3.6)

where B = DN(z,y,z) and |J| i1s the Jacobian of the transformation.

10



Substituting equations (3.2), (3.5), and (3.6) into (3.1) and defining

H = /_ 11 /_ 11 /_ 11 PTSP|J|dédnds

a = /11/11/11 PT B dédnds (3.7)
1 1
Q = /_1/_1NTTds
and noting that
dV = |J|d¢dnds (3.3)
gives
e = 3 {;BTHB _8TGq + QqT} (3.9)

n

Equating the first variation of 7. to zero in each element results in
3=H'"'GLg" = H 'Gq (3.10)

where ¢* are the global displacements which are related to the element displacements by the
Boolean matrix L,.

By substituting (3.10) into the expression for é7,,., a new expression for é7,,. may be
written as

n n

§me = 8¢7T {Z L'KLg =3 LTQ} =0 (3.11)
where @ is the element load vector and K is the element stiffness matrix
K=GTH'G (3.12)

The equation (3.7) can be numerically integrated, but care should be taken to ensure
that the proper order of integration is used.

[t has been proved in the paper by Spilker that if the assumed stresses are complete
polynomials, the element stiffness will be invariant to general rotation and translation. To
reduce the numbers of 8’s, the equations of equilibrium are applied to the assumed stress
terms. However, lack of invariance does not imply poor element performance. In isopara-
metric elements, however, as the choice of the local orthogonal system is not unique, the
element must be inherently invariant for good results.

As expected in plane elements, the optimal sampling points are the Gaussian points of
integration for the stresses. However, the results are still better than those in the assumed
displacément method, as the stresses in the hybrid method satisfy equilibrium conditions
which relate the stress gradients.

11



3.2 Examination of Different Element Models

The four—node linear displacement model (see Fig. 3.1).

The shape functions N;(€,n) for the intra—element displacement field correspond to those
for four-node bilinear functions.

Using complete polynomials for the stress approximation we have for a linear field

0 = B+ By + Bex
o, = Ps+Paz+Pry (3.13)

Oy = 55 - 57(E - ,Bﬁy

which is variant.

The minimum number of B’s required, ng, as a necessary condition for correct stiffness
rank is

N8 = Nd.of — Nrdof (3.14)
where
Ndof = number of element d.o.f.
(3.15)
Nedof = number of rigid body d.o.f.

Spilker, et al. compares the performance of two elements, one with 73’s (PHTL) and one
with five @’s (the minimum required by equation (3.14) - PH5L).

The optimal sampling point for both these elements is the centroid of the element. The
dimensions of the element are a and b. The stiffness matrix for the element PH7TL corre-
sponding to a set of generalized displacement parameters «, (for plane stress) is

r 1 v ]
(1 —wv?) 0 (1-v2) 0 0
1 2
0 01+ f) 0 0 0
K* = 4Eab| — 0 ! 0 0 (3.16)
R NV (1-+7) ‘
0 0 0 —02(1 +f2) 0
0 0 0 0 L1
L 2(1+v)

12



Figure 3.1: The four node linear displacement model.
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1.e., the displacements are interpolated as simple bilinear polynomials of z,y in terms of the
eight displacement parameters. When the strain displacement relations (3.6) are used, to
relate ¢ to «, only five @’s remain as the constant terms fall out. These five a’s correspond

to stretching and bending along the two axes and pure shear:

ap = ja(-T + T+ T3 —Ty)

ay = tab(u; — U + T3 —Uy)

az = i‘b(—vl — Ty + U3 + Ty)

oy = :ab(Ty — T + U3 —Ty)

as = tab [b(—U; — Uy +Us + Us) + a(—Ty + T2 + T3 — Ty)]

where all of the displacements correspond to the local coordinate system used.

The terms f; and f; are

[(a/b)? —v]°
107+ (a/0)22(1 + v)]

[(b/a)? — v)’
[1 =02+ (b/a)?2(1 + v)]

ho =

fr =

N* is definite and hence, PHTL has no spurious zero energy modes.

(3.18)

In PH3L, f, and f; are different and, therefore, cause a difference in the analysis of the
bending problem. Element PH5L shows no spurious zero energy modes at ¢ = 0. But since

I depends on ¢ the stiffness rank should be explored.

Computing the G matrix at an arbitrary angle ¢, in terms of the general displacement

parameters
[ 4ab 0 0 0 0 ]
0 3(ab®—d®bc) O —2ab’¢, 0
G =10 0 dab 0 0
0 2a%be 0 3(a®b— ablc;) 0
L 0 0 0 0 dab |
where
_ose(ct —s?) 8
“a 848 ] b+ sb

(3.19)



with s = sin 8 and ¢ = cos 0.

It is found that the matrix G becomes singular for § = 45° leading to two zero—energy
modes, so that PH5L is not completely invariant. Thus, this element should be used with
great care.

A pure bending problem was solved using each of these two elements; the results are
summarized in Fig. 3.2. PH7L leads to a sstiff” solution that converges only when more
than ten elements are used. However, it is invariant, unlike PH5L, and gives good results at

all §’s.
The eight node quadratic displacement model (see Fig. 3.3) .

The shape functions here correspond to those for eight node isoparametric serendipity ele-
ments (for the displacement approximation).

For this 16 degree of freedom element, a minimum of 13 3’s is required. The smallest
stress field that satisfies this requirement in equilibrium and invariance, is a cubic.

After equilibrium conditions are satisfied, an 18 3 field is derived

o, = B + Gex+ Syt Bsy? + 2Bozy + Bror? + 3522
+ 38ty + 381s2y* + 3172

o, = B3 F Gzt Bzy + 28uzy + B2 + Foy” + 38152y°
+ 314y° + 38162y + Fisz®

Oy = 5 — Brz — Bsy — 31122 — Boy* — 28102y — 331227y

— 3Buzy’ — sy’ — Biez®

which is invariant and has no spurious zero—energy modes.

To reduce the number of 3’s, the Beltrami- Mitchell compatibility conditions (for plane
strain) are employed, where
Vo, +0,) =0 (3.22)

15
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Then, after re-numbering,

Or = B+ oz + Bay + Bsy? + 26ezy + Broa? + Braz®
+ 513(3113234 — ‘2y3) + 3814zy? — ,‘3153/3
oy = B3 + Baz+ Bry + 20117y — Fez? + Bro(y? — 22?)
+ B12(32y® — 22°) + B13y° + 38152ty — 3y, 18
Ozy = J5 — frz — Bey — Biz? — Boy® — 2B10zy — 38122y
— 38132y* — By’ — Bis2°

This element (PH15Q) is still a complete cubic with only 15 3’s and is invariant and has
no spurious energy modes. The optimal sampling points for both the PH15Q and PH13Q
elements are the 2 x 2 Gaussian points.

Another reportedly good element is the 14 3 element developed and tested by Hershell.
However, it is not invariant.

Some example problems were solved and the results. as well as the conclusions. are
summarized in Fig. 3.4.

The previous graph gives the results for a plane stress problem. The performance of the
PH14Q element is excellent, even when the order of integration is reduced to 3 x 3. However.
the PH18Q element stiffness becomes singular when the integration order is reduced.

3.3 Numerical Experiments

Some numerical experiments were conducted to compare hybrid stress elements with tra-
ditional displacement method elements. Results show remarkable deficiencies in traditional
displacement methods for anisotropic materials. The analysis of a cantilever beam under
the effect on an end shear load was selected as the test problem, as shown in Fig. 3.5. The
data for the problem include the following:

18



Computed/lixact Sness Max

Figure 3.4:
18 3’s.

(S}
[
f
O

(@9}
¢

;L)
wQ
$—

il
[}
|

Comparison of a plane stress problem for an eight node quad with 14, 15, and

19

DOF (8 =09




JEY AN =150 7
R 2 <°

? o~

i

P —_—

/) \ , A <
A -

2 T
T s
A ‘
¢ |

| |

t 1/0 _i

| ' |

Figure 3.5 Anisotropic cantilever beam with an end load.
20
ORISINAL PAGE IS

GF FOGR QUALITY



E, = Young’s modulus in direction 1

E, = Young’s modulus in direction 2

Vg = Poisson’s ratio

Gy, = Shear modulus (independent)

0 = angle between material and global axes

For the isotropic case, classical beam theory gives the following expression for the tip
deflection:

Wi
Uy = ) 3.24
Uy p 3EI ( )
We shall use !
W =150lb., 1 = 10", E =3.1071b/in*, [ = h%/12 = 5 (3.25)
Then
Upp = 027 (3.26)
The assumption of plane stress was made.
(a) Isotropic case
1. Linear quadrilateral elements (4 nodes, 73, meshes shown in Fig. 3.6)
No. of nodes | ugp (hybrid)/uana. | ip (disp.)/tanal. | (9z)max (hybrid) i (02 )max(disp.)
(elements) (07 )max (anal.) (02 )max (anal.)
(mesh)
5 (10) (A) 0.8815 0.6789 0.7837 0.7036
33 (20) (B) 0.8297 0.7110 0.7442 0.7152
44 (30) (C) 0.8128 1.1578 0.7418 1.2239
3 (40) (D) 0.9690 0.8950 0.9064 0.9176

2. Quadratic quadrilateral elements (8 nodes, 15 3)

No. of nodes
(elements)

‘?.L“p (hybrid)/uanal_

Uip (disp-)/Uanal.

(Uz Jmax (hyb“d)

(O'J:)max(disp-)

(Ur )max (a'na‘l')

(02 )max (anal.)

28 (5) | 1.0070

0.9885

0.9841

0.9693



N

Figure 3.6: Finite element meshes used for testing the two—dimensional hybrid stress models.
A. 10 elements B. 20 elements

C. 30 elements D. 40 elements
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(b) Anistropic case

1(a) Linear quadrilateral elements
El =3x 107pSi, E2 =3 x 505pSi,V12 =0.3

Gz = 1.1538 x 107psi, 6 = 30°

No. of nodes | w;, (hybrid) | up (displ.) (02)m (hybrid) | (o;)m (displ.)
(elements)

63 (40) | 01136" | 0.6271" | 69943 psi | 23534 psi

1(b) Quadratic quadrilateral elements

No. of nodes = 28,8 = 30°, Ey/Ey, =100

ueip (hybrid) ’ Uip (displ.) ‘ (02 )m (hybrid) ’ (o2 )m (displ.) i Tzy (hybrid) ‘ Ty (displ.)
0.14117 [ 0.8799 j 6827.0 psi [ 6452.8 psi } 697.8 psi } 419.2 psi

Similarly, for the same values of £y, £s, G, v12, but for § = 45° and 6 = 0°, the above
cases were run. The results obtained were:

2(a) Linear quadrilateral elements § = 45°

Try (displ.)
733.3 psi

utip (hybrid) l utip (displ.) ' (0z)m (hybrid) l (0z)m (displ.) ’ Tyy (hybrid)
0.4049™ | 04131" | 6367.2psi | 10174 psi | 13623 psi

K
|
|

2(b)Quadratic quadrilateral elements § = 45°

wip (hybrid) ‘ uip (displ.) ’ (0z)m (hybrid) ‘ (0z)m (displ.) ' Tey (hybrid) l Tzy (displ.)
04964 [ 088317 | 6682.0psi | 7844.6 psi | 876.3 psi | 953.2 psi




3(a)Linear elements 6 = 0°

ugp (hybrid) I wip (displ.) ’ (0z)m (hybrid) ’ (oz)m (displ.) { Try (hybrid) ) Tzy (displ.)
0.02009” | .018359” | 6859.3.0 psi | 6314.5psi | 214.6 psi | 1019.4 psi

3(b) Quadratic elements 8 = 0°

Uip (hybrid) l uyip (displ.) ‘ (0z)m (hybrid) } (02 )m (displ.) ’ Ty (hybrid) | ry, (displ.)
0.02022” | 0.02007” [ 6804.1psi | 6687 psi | 215.2psi | 248.2 psi

The analytic solution for the case with § = 0° is

or = 6971.4 psi
Try = 225 psi

So. the errors in the hybrid element model are:
0::24% ¢ 7oy 4.4%

and in the displacement model, the errors are

o::4.2%(at best ) 5 7,,:11.1% (at best) .

Next, the case of a tapered cantilever beam was considered (see Fig. 3.7). Only the
elements that gave reasonably accurate results were used (the quadratic quadrilateral hybrid
stress elements), which were compared with the regular displacement type elements. The
tip displacement, as determined by elementary beam theory for a uniform load W /length is
u = 4.08 x 1072 inches. Beam theory gives for the bending stress at any point is o, = W[L"
at that section, and is maximum at the supported end.

(a) Isotropic case - using quadratic quadrilateral elements (8 nodes, 15 3),

No. of nodes | uyp(hybrid) | uyp(disp.) | o hybrid | o.disp.
(elements) Utip(anal.) Utip(anal.) oy anal. | o, anal.
45(10) | 1.0298 | 1.0164 | 1.0180 | 1.0323
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(b) Anisotropic case — 8 nodes, 15 3 elements

E1:3X107p81 3 Eg/Elzl/IOO

No. of Nodes | uy, (hybrid) uyip (displ.) | o, hybrid | o, displ.
(elements)

6 = 45°
45 (10) 0.1060” 0.20127 2068.0 psi | 2636.8 psi
g = 30°
45 (10) 0.0315” 0.03876” | 1968.5 psi | 2076.0 psi
g =0°
45 (10) 0.00423” 0.00419” | 2027.3 psi | 1999.0 psi

Discussion of Numerical Experiments

For isotropic materials, when the analysis was conducted using four-node quadrilateral ele-
ments, neither the hybrid nor the displacement models captured the cubic variation of the
displacement until the mesh was sufficiently refined. However, the stresses from the hybrid
model were better, though only marginally, since only a linear variation in the stress was
used. When quadratic elements were used, the hybrid element model gave excellent results,
both for stresses and displacements, as the stress shape function was a complete cubic and
was thus able to approximate the bending moment and shear stress very accurately.

For anisotropic materials, although the results obtained using linear and quadratic hy-
brid models were close, the displacement models gave significantly different results, in both
displacements and stresses. This behavior is especially significant when the material axes
are inclined to the global axes. While the hybrid element model continues to give excellent
stresses, the displacement model gives very poor results.

For a tapered cantilever beam, again, the hybrid model gave better displacements than
the displacement model, especially for anisotropic materials with material axes that do not
coincide with the global axes.



4 Vibrational Analysis

4.1 A Variational Principle for Dynamic Analysis

The equations for dynamic equilibrium are given by:
oij; t F=r; in Vatallt (4.1)

where r; = inertia impulse vector.

Equation (4.1) may be written as

t
5 U (005 + Fi— r,-)dt] ~ 0 (4.2)
0
Hence, another way of writing this equation would be
Tij.j -+ fi =T (43)

where Ti; = 0ij and f; = Fi. The tensor T;; 18 referred to as the impulse tensor field.

The boundary conditions are prescribed velocities and surface impulses, specified on
mutually exclusive regions, L.e.,
U; = U on Sy (4.4)

and

Ty = bi on Sr (45)
where n; is the component of the unit normal vector on Sr.

The strain—-displacement relation is

1

ey = 5luis t ) (4.6)
and the kinetic energy function is
0= /V G (r)dV (4.7)
while the complementary strain energy is
Ut = /V i (i) dV (4.8)
where
OQuy/OTi; = &ij (4.9)
In linear elasticity,
ul = %Sijleikal (4.10)

27



Corresponding to Hamilton’s principle, we can define a functional as

t2 [ .
Te = 2 [U(Ti) — U(0j5) —_/ ti“ids} dt (4.11)

t1

where the assumed stresses must satisfy the equations of motion and the traction (impulse)
boundary conditions of s,.

In the finite element formulation, equilibrium must be satisfied in each element and on
inter—element boundaries so that

t2 N
4 :/ 2 [U,, = Up(04;5) —/ tiuids —/ uitids} dt (4.12)
oy Sup SNP

where s,p denotes the part of the surface of Vp on which velocities are prescribed and syp
denotes the interelement boundary of Vp, the particular element

Sp = Sup+3;p+ Syp (4.13)

so that

t2 -
r= 0% [Up ~U; = [ towds - [ ltiti(sz dt (4.14)
t Sp S-p
The admissible surface velocities and the impulses must satisfy the following conditions:

1. Prescribed at arbitrary times ¢; and ¢,.
2. Continuous first derivatives for Ti;, continuous m.

3. Equilibrium conditions (dynamic/boundary conditions).

4.2 Formulation of Element Matrices for Dynamic Analysis
For dynamic analysis using the hybrid/displacement models, a consistent mass matrix was

generated with a kinetic energy term that was introduced into the energy functional, so that

9

F

1
Tayn = = / oT SsigdV — / sigT DudV + / WTTds — / paladV (4.15)
14 Vv So \%4
When discretized, this becomes

Tdyn = D [,/v oTSodV —/V oT Dudv +/s uTTds _./v puTadV} (4.16)

n

If u = Ngq, the kinetic energy term becomes

/ pd NTNGdV = 4T Mg (4.17)
Vv
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where
M= | NT,N|J|d¢d 4.18
[, NToN|J lded, (4.18)
is the mass matrix for each element.

After the element mass matrices are assembled to form the global mass matrix, the

generalized eigenvalue problem
Kz =AMz (4.19)

is solved for the first few eigenpairs.

4.3 Numerical Experiments for Hybrid Stress Element Vibra-
tional Analysis

Problem Definition

A cantilever beam is analyzed for its first few natural frequencies (eigenvalues) and mode
shapes using both the assumed-displacement and the hybrid-stress method.

A consistent mass is generated and the generalized eigenvalue problem
Mi+Kq=0 (4.20)

is solved for its eigenpairs, which are the natural frequencies and mode shapes of the physical
system. Since the size of the matrices is not very large, a solver from IMSL that determines
the eigenvalues and eigenvectors is used instead of the sub-space iteration scheme suggested

by Bathe [2].

For Bernoulli-Euler beams composed of isotropic materials (neglecting the effect of shear
deformation and rotatory inertia since only the first two modes will be considered where
the correction introduced as a result of these effects is small), the equation of motion of
transverse vibration is

2 2 2
dd—a:? (E[%) +pA(jiTl; =0 (4.21)
where
u = u(z,t)is the transverse displacement
A = area of cross section of the beam
r = axial distance from the point of support
p = mass density of the material
I = centroidal moment of inertia of the cross section

The boundary conditions for the cantilever are:

At the fixed end:



= - = 22
u=0 and = 0 (4.22)
At the free end:
d*u du
F = 0 and ;1;5 = 0 (423)

Substituting the boundary conditions into the general solution, we get three homogeneous
linear algebraic equations which would give a non-trivial solution only if the determinant of
the coefficients vanishes, are derived

14+ cos AL coshAL+1=0 (4.24)

which is the characteristic equation whose roots are the eigenvalues Ar times length L. A
numerical solution alone exists for the above equations, determined by Craig and Bampton.
The first few values are

ML o= 1.8751
(4.25)
AL = 4.6941
and the natural frequencies for the cantilever are given by
A L)? :
Wy = ( 6) (2) (4.26)
L? pA
so that .
3.516 (EI\? o
and .
22.03 (EI\? ,
=— | — 4.28
R~ <0A> (4:28)
Substituting the numerical values for the given problem results in the following:
wy = 17.58Hz , wy = 110.15Hz (4.29)
The mode shapes are given by
Vi(z) = cosh(Agz) — cos(A,z) — k.[sinh(A,z) — sin(A,2)] (4.30)
where ‘ O L
s (ML) + cos(A. L) (4.31)

sinh(A.L) + sin(A, L)
as in Craig,.

The first two mode shapes for a cantilever in free vibration are shown in Fig. 4.1.
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Linear Element Results

The meshes that were used for the static problem are used here, with the number of elements
varying from 10 to 80.

The normalized natural frequencies (w; anal./w; f.e. and w; anal./w, f.e.) are plotted
against the number of elements, and are shown in Figs. 4.2 and 4.3.

For the isotropic case, the hybrid model converges to the analytical solution faster than
the assumed displacement model. The mode shapes however do not seem to vary much, as
seen in Fig. 4.4 (for the mesh with 80 elements).

The material model chosen for the anisotropic case is that of cubic syngony with the same
properties as in the static case, and the 40 element mesh. The first two natural frequencies,
for various angles of rotation of the material axes, using both finite element approximations
are tabulated in Table 4.1
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TABLE 4.1

Natural frequencies for an anisotropic cantilever beam
using 40 linear elements for different material axes’ orientations

Orientation of Axes w; (hybrid) w; (displ.) w, (hybrid) w, (displ.)

0° 14.351 Hz  14.785 Hz  85.950 Hz = 88.341 Hz
30° 13.307 Hz  14.726 Hz  80.673 Hz  $8.0945 Hz
45° 12873 Hz  14.058 Hz  78.379 Hz  35.011 Hz
60° 13.307 Hz  14.547 Hz  80.673 Hz  37.318 Hz
90° 14.351 Hz  14.247 Hz  85.950 Hz  $5.934 Hz

From the above table it is observed that the hybrid model gives identical results for a
rotation of 90° and no rotation of the material axes, and for 30° and 60° rotations of the
axes. The displacement method however gives results that vary, even though the moduli £}
and F; are equal.

Quadratic Element Results

The natural frequencies and mode shapes of the 1sotropic and anisotropic cantilever beams
are now calculated using an eight noded finite element mesh with the number of elements
varying from 3 to 20. The meshes used are the same as those for the static case.

The normalized natural frequencies (w1 anal./wy fie. and w, anal./w, fe.) are plotted
against the number of elements, and are shown in Figs. 4.5 and 4.6. Again. 1t is observed that
the hybrid model converges to the analytical solution faster than the assumed-displacement
method. The mode shapes however are very similar in both models, except for the maximum
“amplitude” (when 20 quadratic elements are used) as shown in Fig. 4.7.

The first two natural frequencies for various angles of rotation of the material axes, in
an anisotropic cantilever beam, using both the displacement and hybrid approximations are
tabulated in Table 4.2. The material properties and the material model assumed are the
same as for the static anisotropic case, i.e., 3 independent constants in a crystal with cubic
syngony, where

Ey = E; = 1.9716 x 1071b/in®
v = 0.2875 (4.32)

G2 = 5.4758 x 108lb/in?
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TABLE 4.2
Natural frequencies for an anisotropic cantilever beam
using 10 quadratic elements for different material axes orientations.

Orientation of the Axes w; (hybrid) w; (displ.) w, (hybrid) w; (displ.)
0° 14.130 Hz  14.197 Hz  83.675 Hz  84.682 Hz
30° 13.020 Hz  14.061 Hz  78.264 Hz  83.995 Hz
45° 12.679 Hz 13.058 Hz  76.499 Hz  78.911 Hz
60° 13.020 Hz  13.707 Hz  78.264 Hz  82.211 Hz
90° 14.130 Hz  13.276 Hz  83.675 Hz  80.023 Hz

The results of the hybrid model are as expected, with frequencies falling as the angle of
rotation is increased. reaching a minimum at a rotation of 45°, and then increasing symmet-
rically (since £, = E) up to a rotation of 90°.

The results of the displacement model do not show symmetry about § = 45°, and are
not as invariant under a rotation of the axes.

A Specific Numerical Example

A tapered cantilever beam consisting of three crystals of the same material but with differ-
ent orientations of the material axes is considered next and analyzed for its displacements,
stresses, natural frequencies, and mode shapes. The beam is shown in Fig. 4.8. Since the
nickel alloy for which experimental data was provided exhibits cubic syngony in its crystals,
the same material properties are considered as used in the previous. Also, since of all the
elements tested, the 8 noded hybrid-stress element gave the best results, this element is used
in the mesh shown in Fig. 4.9.

The following are specifications for the beam:

¢ = 5 in; depth at fixed end = —5 in; depth at free end = 1 in;

static load = 150 lb; crystal orientation = 0°, 30° and 45° (see Fig. 4.7).

The results are tabulated below:
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Figure ' ¥ \ tapered cantilever beam consisting of 3 crystals subjected to a static load.

VN

(91}

Figure 1.9: Eight noded quadrilateral finite element mesh for the tapered cantilever beam
shown 1 Fig. 4.8. ’
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TABLE 4.3

Comparison of hybrid displacement mode results for a
tapered, 3-crystal anisotropic cantilever beam

Parameter Hybrid Method Displacement Method

Utip 0.0539 in 0.0502 in
Obending(max) 1.632 x 10% psi  1.519 x 10* psi
Trax 1.643 x 10° psi  1.511 x 10¢ psi
Wy 30.198 Hz 30.869 Hz

W 131.482 Hz 143.976 Hz

The displacements and stresses differ, at most, by about 6.5%. and the natural fre-
quencies by even less. However, if the 30° rotation is changed to a 60° rotation, all errors
increase rapidly to a maximum of almost 12%.

The location of the points of maximum bending and shear stress are predicted accurately
by both models, although the predicted magnitudes differ. The maximum bending stress is
observed in elements 1,6 while the maximum shear stress is observed in elements 5,10 as the
material axes in these two elements are rotated by 45° relative to the global frame.
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5 Three—Dimensional Element Definition

The formulation of the three—dimensional hybrid stress elements is identical to the formula-
tion of the two—dimensional elements. The static complementary energy functional, subject
to equilibrium conditions, is given by:

e = {%/y oTSodV — /Vn oT(Du)dV + / uTTds} (5.1)

The stresses are interpolated using the stress parameters 3 and the polynomial stress
shape function P,

o=Pj (5.2)
such that the homogeneous equilibrium conditions are satisfied:
Dioc =0 (5.3)

A primary difference between three-dimensional and two-dimensional hybrid stress element
calculations is in the calculation of the P matrix in the above equation. As shown by Spilker,
et al, in order for an element to be invariant under rotation, the stress interpolation functions
must be formed from a complete set of basis functions and the number of independent stress
parameters must be equal to or greater than the number of rigid body modes:

ny; < np—ng (5.4)

For a quadratic twenty node brick, np = 60 and np = 6, so that the minimum number of
stress parameters is 60 —6 = 51. Not only must there be at least this minimum number of
stress parameters, but also the stress interpolation functions must be formed from a complete
set of basis functions, in this case, complete polynomials. Complete quadratics would yield
a total of 60 stress parameters, but if the stresses are to satisty equilibrium. the number of
stress parameters is reduced to 48, six short of the number required for invariance. Thus, full
cubics must be used to calculate the stress interpolation functions. Initially, the P matrix
would be:

1...2> 0 0 0 0 0
0 1.2 0 0 0 0
0 0 1...22 0 0 0
P= (5.5)
0 0 0o 1...22 0 0
0 0 0 o 1...z22 0
0 0 0 0 0 1.2

where 1 ... 23 represents a complete cubic polynomial of 20 elements and each zero represents
90 zeros. The P matrix is then a 6 x 120 matrix and there would be 120 stress parameters.
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The number of stress parameters can be reduced by applying the homogeneous equilib-

rium equations:

do, N 0Ty
Oz dy
0Ty do,
dz + dy
OT.s N 07y.
Jz Jy

0Tz,
0z

OTy2

Jz

do,
Oz

Each of these equations yields a reduced order polynomial with 10 terms. For the equa-
tions to be satisfied for arbitrary values of z,y, and z, the coefficients tor each term must
equal zero. Thus, 30 equations are generated relating the stress parameters to each other
and the P matrix is reduced to a 6 x 90 matrix.

For an isotropic case, the number of stress parameters can be further reduced by applying
the Beltrami-Michel stress compatibility equations. These equations are essentially a refor-
mation of the compatibility conditions in terms of the stresses. For the anisotropic case, one
must again start with the strain compatibility conditions and reformulate the stress compat-
ibility equations using an anisotropic stress—strain law. The strain compatibility equations

are:
Jey . sy 0*Yzy
dyr  dxr  Oz0y
Pz, D%z Py
)z? dy? dyoz
J%e, N Per 0z
dz? dz2  Jz0z

The stress—strain law for a fully

where the compliance matrix S is

95!

il

ann

a12

a3

a4

ais

a6

ay2

a2

an3

o4

Qgs

doe

a13

as3

as3

Q34

ass

aze

N YA
dydz O Ox Jy Jz
5 2 - ¥ 5 v ~ ms
2 Oy _ 0 v _ 0z + Dy (5.7)
Jxdz Oy dx dy Jz
JPe _ O e Dve i
dzdy 0Oz dx dy Jz
anisotropic material is given by:
& = Si]‘O'j (58)
ayy 15 dis
g4 Q25 0G26
Q34 035 436
since a;; = Gj; (5.9)
g4 Qg5 Q46
a45 ds5 Use
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£: = Si; Pjx Bk
The stress compatibility equations become

9*S Py fr . PSPuPe  9*SPuBe
dy? oz 0Ozdy

(5.10)

Since S is constant, the compliance matrix can be pulled out of the differential, giving

-t

0% Py 3 LS 0% Py B

0" Py PPl _ o 0% Py Bk
11 ayQ 12 axz a

" Ocy (5.11)

This procedure vields six equations, each with four terms. Again, since these equations
must be satisfied at all points in the element, each coefficient must be zero and 24 equations
are generated to eliminate stress parameters, leaving a total of 66 stress parameters.

The solution for the P matrix can be obtained in closed form for both the constraints
due to equilibrium and due to stress compatibility, however, the algebra is quite tedious.
This procedure can be accomplished by a series of matrix manipulations on the original P
matrix and on the various derivatives of the P matrix. Both the first and second order
derivatives must be defined beforehand, and since the position of a particular term (i.e., the
zy?® term) will vary with which derivative is being taken, a careful account of the variables
associated with each term in the derivatives is necessary so that the constraint equations
can be properly formulated. The P matrix is statically condensed using first the equilibrium
constraints and then the stress compatibility constraints resulting in a 6 x 66 matrix.

Because the number of stress parameters is above the minimum number of 54, the solution
may be overly stiff, but this can be determined by a comparison of this fomulation with the
54 stress parameter element of Rubenstein, Arluri, and Punch [20] while using an isotropic
material model.

For an eight node brick, ng = 24 while ngr = 6, so that the minimum number of stress
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parameters ng is 18. If trilinear stress interpolation functions are used, o is given by

oz = P14 Bz + Bay + Bz

oy = PBs+ Bez+ Bry + Bsz
0. = Po+ B+ Buy t+ Bz
(5.12)
Toy = Bz + Bz + Bisy + Hrez
Tz = Bir + BisT + By + Booz
Tyz = Ba1 + BT + Py + B4z
Introducing o into the equilibrium equations gives
5‘320 = -‘,‘32 - ,:315
By = —Du— 5z (5.13)
Bz = —Bi2— s
Substituting and renumbering yields
o, = B+ Gx+ Fay+ Baz
o, = Os+ Bsz+ Bry + sz
0. = B9+ B0z + Suy + Bies
(5.14)

Ty = Bz + Bz + Bisy + Fe2
Tez = Bir + Fisz + Broy — (B2 + Bis)z

Tye = Do+ Bz — (B2 + Bis)y — (87 + Buu)z

Twenty-one stress parameters remain and thus the element should be free from spurious
zero—energy modes.

A minimum stress parameter element from an eight noded brick has been proposed by
Punch and Atluri [18]. Here certain symmetries of the elements are assumed and methods
of group theory are used to eliminate some of the stress parameters without affecting the
rotational invariance of the elemment. This method is clearly adequate for isotropic materials
and may be adequate for materials which, while not isotropic, have high degrees of symmetry,
but they are not applicable to fully anisotropic materials.
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The stress approximation for this 183 element is given by:

oz = (P14 B3)+ 208z + Psyz
o, = (P1+B8s—53)+28sy + Brrzz
0. = (B1—B4)+ 289z + Biezy
(5.13)
Tey = DPo+ (Bra — Bs)z + (Biz — Br)y + (Bis + B7)z
Tez — ‘311 + (}915 - 39)1T + (32 + 386)1/ - (513 + ,87)3
7. = Dot (82— 35— Os)z —(Bs+ Bo)y — (8o + Bi5)z
The stiffness matrix is calculated as before
K=G'H™'G (5.16)
where
1 1 1
H= / / / PTSP|J|dednds (5.17)
o Jo Jo
and Lo
G = / / / PT B dédyds (5.18)
o Jo Jo

The calculation of the compliance matrix is made in the material axes and a rotated
compliance matrix S is calculated with respect to the global axes. The new terms are given

by:
aij = Zzaaniman (519)

where a,,, are the components of the compliance matrix in the material axis and the ¢;n
and ¢;,, are functions of the direction cosines relating to the material and global axes.
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6 Alternate Hybrid Stress Element Formulations

6.1 The Eight—Node Punch and Alturi Brick Element

An alternative approach to the assumed stress field was proposed by Punch and Alturi. The
basic hybrid stress model is developed in the same manner as previously outlined regardless
of the form of stress interpolation. The Punch and Alturi approach is based upon symmetry
group theory. The method defines a set of ‘natural’ irreducible strain subspaces which are
invariant to element translation and to the 24 symmetric rotations of a cube. For each such
strain space, at least one stress space must be defined which is also invariant. For an eight
node brick, there are eighteen natural strain subspaces along with six rigid body modes. A
minimum of 18 independent stress subspaces are required. If complete quadratic functions
are used to generate the equilibrated stress subspaces, a total of 43 stress subspaces are
created. Using all 48 subspaces would be equivalent to using complete polynomials and
eliminating 12 of the resulting 60 stress parameters by applying equilibrium constraints.

The difference with this formulation and those given earlier is that here each stress param-
eter is related to an invariant subspace rather than to an individual term in an equilibrated
complete polynomial. Thus, any stress parameter can be removed without affecting the in-
variance of the resulting element. After the parameter is deleted, the rank of the resulting
stress function matrix, G, must be at least 18. Certain linear terms must be included, but
most of the quadratic terms can be eliminated without affecting the rank of G. However,
once subspaces are removed, the resulting G matrix is composed of incomplete polynomials.,
and may no longer contain all of the cardinal stress states of pure bending. Therefore. the
resulting element must be evaluated to be sure that the bending stiffness is adequate.
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For a least order formulation, these stress subspaces are presented below as second order
tensors in 3-space:
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The corresponding stress space function matrix is given below:
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This element performs well in tension, pure shear, and pure bending with isotropic ma-
terial properties. It also performs well in both tension and pure shear with fully anisotropic
material properties as long as the loads are applied separately and along the axis of a cubic
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element. When the loads are combined, the performance begins to degrade. However, exact
solutions of the stresses and strains in these combined loading situations must be completed
before the full extent of the degradation can be determined.

One additional problem exists with this element. The formulation of the stress and strain
subspaces was based upon the symmetric transformations of a cube. As the geometry of the
element is distorted, the performance of the element is degraded. A similar degradation may
occur if the anisotropy of the material is increased, especially when non-symmetric loads are
applied. It should be noted, though, that in most cases these elements give better results
than eight noded displacement elements, although the computational effort is significantly
greater.

6.2 The Twenty Node Punch and Alturi Brick Element

A twenty node hybrid element has been developed based upon the work of Punch and Atluri.
This element uses the same lines and quadratic terms that are used for the eight node element
described above, but adds six linear terms, eighteen quadratic terms, and twelve cubic terms
for a total of 54 stress parameters. The following stress subspaces make up the twenty node
elements:
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Quadratic Terms
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Cubic Terms
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The twenty node hybrid element has an H matrix of rank 54 which must be invertible.
The H matrix is given by

L
H=) PTsp

=1

— where L is the number of integration points. The matrix S is of rank six so that a minimum
of nine integration points is required for H to be of full rank and thus invertible. Without
a prior: knowledge of the mesh, the integration scheme must be symmetric. Using a Gaus-
- slan quadrature, this requires 27 integration points (i.e., 3 x 3 x 3), and consequently the
computational effort is 3 times what is actually required Irons has implemented on a 14
point integration scheme, which is basically a 2 x 2 x 2 scheme with an additional integration

- point at the center of each face of the hexahedral element.

This integration scheme gave

1dentical results to five decimal places to the Gaussian quadrature scheme with essentially
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60% of the computational effort. A 2x2x2 integration scheme was also formulated with
an additional integration point at the center of the hexahedral element for a total of nine
integration points, the minimum number required. The stress space function matrix for the
54 term model is shown below.
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6.3 The 42 Parameter Hybrid Stress Brick Element

An alternative element which does not suffer from these symmetry-related problems was
also developed. Complete polynomial stress functions are used and equilibrium constraints
are applied, yielding a 48-parameter element. The strain compatibility equations are then
satisfied using a fully anisotropic material model. This constraint reduces the number of
stress parameters to 42. This is an inordinately large number of stress parameters and may
vield an overly stiff element, but it may also yield an element that is far less sensitive to
distortion and anisotropy.

While the calculations for the polynomials can be derived in closed form, the algebra
is extremely tedious. However, the constraint equations can be formed as a set of matrices
showing the initial relationship between the stress parameters as derived from the equilibrium
equations and the stress compatibility.

The equilibrium constraint matrix contains only constants while the compatibility con-
straint matrix contains ratios of the compliance matrix constants. The constraint matrices
are first internally reduced eliminating the constrained parameters from the constramnt ma-
trices. The P matrix initially contains only the complete basis functions as:

P 0 0

0 P 0

0 0 0
(6.6)

0 0 0

0 0 0

0 0 P

where P represents the following 10 terms for the eight node element:

1 2z 2y 2z z* 2y 2z Yy 2yz z2 (6.7)

and each O represents 10 zeros. For the eight node element, P is initially a 6 x 60 matrix,
while for the twenty node element, full cubic basis functions are required so that the P
matrix is 6 x 120. For the eight node element, there are 12 equilibrium constraint equations
and six compatability constraint equations, while for the twenty node element there are 30
equilibrium constraints and 24 compatibility constraints.

The elements of the P matrix are functions of position, therefore, the P matrix must be
calculated for each integration point and then the constraint equations are used to eliminate
the constrained stress parameters. The P matrix is then statically condensed to yield a
6 x 42 matrix for the eight node element and a 6 x 66 matrix for the twenty node element.

54



6.4 Numerical Experiments

The eight node and twenty node hybrid elements were compared to the standard displace-
ment elements for both single elements and for a six element beam. The single elements were
tested in pure tension, pure shear, bending, and torsion using both isotropic and anisotropic
properties. As is shown in Table 6.1, all elements gave exact solutions for pure tension and
pure shear with isotropic material properties. For pure bending, the eight node displacement
element is overly stiff but all of the hybrid elements again gave exact results. None of the
elements is able to give exact results for torsion, but the hybrid elements perform as well or
better than the corresponding displacement element.

Table 6.1. Displacements Produced by Cardinal Stress States for Isotropic
Material Properties

Pure Pure Pure Pure
Element Tension Shear Bending Tortion

DM 8 100 100 67 34
H8-42 100 100 100 S4
HS8-18 100 100 100 84
DM 20 100 100 100 95
H20-34 100 100 100 102

As the degree of anisotropy is increased, the performance of the displacement elements
decreases. Table 6.2 shows information equivalent to Table 6.1 for anisotropic material
properties. Here the ratio of Ey,/Es3 is 3 and the material axis is rotated with respect to
the element axis by the direction cosines given below:

Direction Cosines:
BT74 574 5774
071 -.7071 .0000

-.4082 -.4082 .8165

Both of the displacement elements show deterioration in bending and torsion as the
degree of anisotropy increases although the degradation is less for the twenty node element.
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Table 6.2. Displacements Produced by Cardinal Stress States for Anisotropic
Material Properties

Pure Pure Pure Pure
Element Tension Shear Bending Torsion

DM 8 100 100 46 76
H8-42 100 100 100 84
HS8-13 100 100 100 84
DM 20 100 100 97 92
H20-54 100 100 100 95

These calculations were performed using double precision for all real variable calculations.
The result for the twenty node elements were compared for three integration rules: a 4 X4 x4,
a3 x 3 x 3, and the 14 point rule proposed by Irons [7]. The differences in results were less
than one percent. Spilker [22] stated that the 14 point rule produced some ill conditioning
of H but no such ill conditioning was detected in these runs. Consequently the 14 point
rule was used for all subsequent calculations except for occasional checks to assure that the
results were indeed the same for the 14 point and 3 x 3 x 3 rules.

A six element cantilever beam was analyzed using both eight node and twenty node
bricks. These beams are shown in Fig. 6.1. The beams were analyzed both with a pure
moment loading and a uniform end shear and for isotropic material properties as well as a
series of anisotropic material properties. Figure 6.2 shows the normalized tip displacement
for a pure moment load with eight node bricks as a function of the degree of anisotropy
where the degree of anisotropy is given by the ratio of the Young's moduli in the primary
material axes. Figure 6.3 shows the normalized tip displacement of the cantilever beam for
uniform end shear as a function of the degree of anisotropy. The hybrid stress elements are
clearly less sensitive to the degree of anisotropy than the displacement. This is true even
for the least—order formulations of Punch and Atluri which depend upon element symmetry
for their formulation. Figure 6.4 shows a comparison of o, in the cantilever beam for a pure
moment load on the end of the beam as a function of the degree of anisotropy. The stresses
in the beam should not change as the material properties change and all stresses except o.
should be zero. This is clearly not the case for the displacement elements, even for the twenty
node brick. The eight node element actually gives better results than the twenty node brick
because the stresses were interpolated at the 2 x 2 x 2 Gauss points which are the optimum
points.

The hybrid stress elements clearly give better displacements and stresses for highly
anisotropic material properties than their corresponding displacement elements but at some
calculational expense. The calculation times are shown in Table 6.3 for calculation of the
six element cantilever beamn. The hybrid stress elements require up to three times as long
for the calculations but the displacement elements require at least twice as many elements
to obtain the same degree of accuracy in o,. The accuracy in the shear stresses and in o;
and o, though, are still better in the hybrid stress elements.
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Figure 6.1: Three-dimensional finite vicrnent meshes of a cantilever beam.

A. Eight node brick elements

B. Twenty node brick elements
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of the degree of anisotropy.
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Calculation Time for a Six Element Cantilever Beam

DM & DM 20 H8-18 HB-42 H20-54

Time(sec) 67 552 108 562 1422

6.5 Conclusions

The hybrid stress elements presented here can provide significantly improved accuracy in the
calculation of both displacements and stresses for highly anisotropic materials in areas of high
stress gradients. The twenty node hybrid stress brick element provides increased accuracy
over the twenty node displacement element at a cost of approximately a three to one increase
in computational time. The eight node hybrid element HS8-18 provides much improved results
over the standard eight node displacement element with less than twice the computational
time. The most surprising result. however, is that the eight node hybrid element provides
almost the same degree of accuracy as the twenty node displacement element at one—fifth of
the calculational effort. For high degrees of anisotropy, this element gives results superior to
the twenty node displacement element.
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7 Numerical Examples

rithms, and solution schemes developed for the stress and vibrational analysis of anisotropic
elastic bodies into the SPAR finite element code. The COMCO three-dimensional anisotropic
hybrid stress elements were incorporated into SPAR on the NASA/MSFC EADS computer
system as SPAR solid element types 542 and S82.

A routine for calculating element materia] (compliance) matrices for non-isotropic mate-
rials was implemented as a TAB sub-processor (SMAT). The stress calculation and display
functions were incorporated into the SPAR GSF and PSF processors. Documentation of
these features is provided in the form of updates to the SPAR Reference Manual (Appendix

A number of example cases were executed to test the new code and to study the effects of
various crystal configurations on SSME turbine blades. The first example consists of a one
inch square by ten inch long cantilever beam modeled with 10 S82 eight-node solid elements
as shown in Fig. 7.1. This example is a three-dimensional version of one of the example
two-dimensional problems reported in Reference 19. As in the two-dimensional problem.
the material chosen was that of cubic syngony to simulate the single crystal turbine blade
nickel alloy. The cantilever beam problem was solved statically for an end shear load of 250
Ib. for material axis rotations of 0, 30, 45, 60. and 90 degrees. The results are presented
in Table 7.1, and compared with the two-dimensional results from Reference 13. As in the
two-dimensional example, it is seen that material axis rotation by pairs of angles that are
complementary produce nearly identical results. This problem was also solved dynamically
for natural frequencies. The results are presented in Table 7.2, As in the static case, the
frequencies calculated for and 90 degree rotations, and 30 and 60 degree rotations are
almost identical.

The second example consists of the same cantilever beam modeled with 4( S82 eight-node
solid elements, as shown in Fig. 7.2. This problem is also a three-dimensional extension of a
two-dimensional example problem from Reference 13." This 40-element model was executed
with the same loads and material axis rotations as before. The results, compared with the
two-dimensional results, are presented in Table 7.3. The results from the 40-element model
are also compared with the ten-element model results and presented in Table 7.4,

The third example consists of a three-dimensional model of an SSME turbine blade
constructed for use in studying the modal characteristics of various crystal configurations in
a typical turbine blade application. This model was developed from a two-dimensional plate
mode] of a blade currently in use at MSFC. A plot of this model is shown in Fig. 7.3, A
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Figure 7.1 Three—dimensional finite element model of a cantilever beam. 10 $82 eight node

solid elements.

T L

atilever beam, 40 g32 eight node

finite element model of a ca

Figure 7.2: Three~dimensional

solid elements.

Material properties for Cubic Syngony

1.9716E + 07 psl

F1=E2=E3=
G = 5 4658 + 06 psi
v = 0.2875
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TABLE 7.1

Anisotropic beam modeled- with 10 S82 three-dimensional elements compared with
two—dimensional solution for ten element model.

3-D 2-D

Material Axis Rot. u-tip max S u-tip max S

(deg) (in)  (psi)  (in)  (psi)
0 0509 14201 .0512 11532
30 0606 14242 0605 12272
45 0639 14256 .0638 12566
60 0606 14230 .0605 12273
90 0509 14201 .0512 11532

TABLE 7.2

Anisotropic beam modeled with 40 S82 three-dimensional elements compared with
two—dimensional solution for 40 element model.

3-D 2-D

Material Axis Rot. u-tip max S u-tip max S

(deg) (in) ~ (psi)  (in)  (psi)
0 0508 14618 .0496 11117
30 0612 14172 .0579 10579
45 0660 15341 .0619 11023
60 0613 15546 .0579 10579
90 0508 14618 .0496 11117
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TABLE 7.3

Anisotropic beam modeled with 40 $82 three—dimensional elements compared with
three—dimensional solution for ten element model.

3-D (40 elem) 3-D (10 elem)

Material Axis Rot. u-tip max S u-tip max S

(deg) (in)  (psi) (in)  (psi)
0 0508 14618 .0509 14201
30 0612 14172 .0606 14242
45 0660 15341 .0639 14256
60 0613 15546 .0606 14230
90 0508 14613 .0509 14201

TABLE 7.4

Anisotropic beam modeled with 40 382 three—dimensional elements compared with
three—dimensional solution for ten element model.

3-D (40 elem) 3-D (10 elem)

Material Axis Rot. Frequency Frequency
(deg) (H2) (Hz)

0 260.53 260.69

30 238.24 239.19

45 230.42 233.27

60 . 238.48 239.36

90 260.53 260.69
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TABLE 7.5

Effect of orientation of material axes on frequencies for SSME turbine blade with material
of cubic syngony to simulate the single crystal nickel alloy.

Rotation about X-axis f1 (Hz) f2 (Hz) {3 (Hz)

(deg)
0 4379 9388 11318
30 4348 9375 117183
45 4334 9313 11676
60 4337 9298 11707
90 4376 9388 11316

Rotation about Y-axis fl (Hz) {2 (Hz) f3 (Hz)

(deg)
0 4379 9388 11818
30 4378 9918 11820
15 4361 10216 11826
60 4362 10101 11834
90 4378 9388 11816

Rotation about Z-axis f1 (Hz) f2 (Hz) {3 (Hz)

(deg)
0 4379 9388 11818
30 4379 9337 11814
45 4380 9306 11315
60 4382 9347 11313
90 4330 9393 11816

Material properties for Cubic Syngony

El=E2=FE3= 19716E+07 psi
G = 5.4658F 4+ 06  psi
v = 0.2875



first and third modes changed very little with material orientation. The largest change in the
first mode frequency occurred with a material rotation of 45 degrees about the global z axis.
This orientation resulted in a first mode frequency reduction of 1.0%. Material axis rotations
about the global z axis produced very little change in frequency, the largest change being a
0.9% reduction in the second mode frequency for a material axis rotation of 45 degrees.

The fourth example consists of the previous blade example modified to incorporate the
$82 solid elements in the base region of the blade, including the “fir tree” portion. A plot
of the modified blade model is shown in Fig. 7.4. The same series of runs made for the
previous configuration was made for this model. The material axes were again rotated about
each of the principal axes and frequencies calculated for each orientation. Since the 532
elements were used throughout the blade, the material orientations were effective from the
tip to the base of the blade. The frequency results are summarized in Table 7.6. Once again,
rotations of the material axes about the global y axis produced the greatest effect, with
an 8.4% increase in the second mode frequency for a material axis rotation of 45 degrees.
However, unlike the previous configuration, rotations about the global z axis also produced
a significant effect. A reduction to the first mode frequency of -7.6% occurred for a material
axis rotation of 45 degrees about z. Material axis rotations about the global = axis again
produced very little change in frequency. The largest change was a 0.8% reduction in the
second mode frequency for a material axis rotation of 45 degrees. The largest change in the
third mode frequency was a 2.8% reduction which occurred for a 30 degree rotation about
the z axis.
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Figure 7.4: Three—dimensional model of a SSME turbine blade modified to incorporate the
S82 solid elements in the base region of the blade.
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TABLE 7.6

Effect of orientation of material axes on frequencies for SSME turbine blade with material
of cubic syngony to simulate the single crystal nickel alloy.

Rotation about X-axis fl (Hz) {2 (Hz) f3 (Hz)

(deg)
0 4969 8764 11849
30 4679 8755 11516
45 4593 8677 11361
60 4678 8644 11754
90 4967 8764 11847

Rotation about Y-axis fl (Hz) f2 (Hz) f3 (Hz)

(deg)
0 4969 8764 11849
30 4828 9218 11980
15 4737 9499 12059
60 4769 9426 12045
90 1969 8764 11847

Rotation about Z-axis {1 (Hz) f2 (Hz) {3 (Hz)

(deg)
0 4969 8764 11849
30 4957 8722 11837
45 4957 8694 11837
60 4963 8728 11836
90 4971 8768 11847

Material properties for Cubic Syngony

El=FE2=FE3= 19716E +07 psi
G= 5.4758F + 06  psi
v= 0.2875
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8 Calculation of Material Constants and Stress Mea-

surements for Anisotropic Materials

8.1 Introduction

Anisotropic materials, in particular single crystal alloys, are widely recognized for their su-
perior mechanical properties as compared with multi-grain materials. In many applications,
in particular high-performance turbine blades, anisotropic properties allow for fine “tuning”
of the dynamic characteristics by means of a proper orientation of the material axes. As a
result, single crystal alloys are finding more and more applications in the aerospace industry.

The anisotropic properties of these alloys introduce additional complications into com-
putational and experimental procedures. Many experimental and computational methods
which are very effective for isotropic materials may be inapplicable or perform very poorly
in the case of strong anisotropy. It was shown in previous sections that displacement-based
finite elements do not perform well in the static and dynamic analysis of anisotropic ma-
terials and that a hybrid finite element formulation is better suited for these applications.
Similarly, strong anisotropy inherent in single crystal alloys requires special attention in the
design and interpretation of experimental results. For example, it can be observed that the
calculation of material constants for anisotropic materials depends on the fourth powers of
the direction cosines of the the crystallographic axes. It is obvious that the calculated values
of the material constants will be strongly dependent on all misalignments of the crystallo-
graphic axes or strain gauges (or other measurement devices). Thus, the design of robust
methods for the evaluation of anisotropic materials requires special attention.

In the spirit of these remarks. we will take a closer look at some experimental procedures
for anisotropic materials and at the sensitivity of their results to errors, misalignments, etc.
Moreover, we will try to optimize certain experimental parameters in order to minimize this
sensitivity and thus develop robust procedures for the parametric evaluation of anisotropic
materials.

The particular experiments considered here include:

o the calculation of elastic material constants from tensile test experiments at an arbi-
trary orientation of the material axes and of the strain gauges

e the calculation of stresses from strain measurements at an arbitrary orientation of the
material axes and of the strain gauges

For both types of experiments, a general procedure is formulated, taking into account
arbitrary types of crystals and arbitrary orientation of the material axes and strain gauges.
Furthermore, a study of the sensitivity of the experimental results to various parameters
is presented. The conclusions of this sensitivity study are the basis for optimization of the
configuration of the material axes and strain gauges.

Several numerical examples illustrate the basic ideas and effectiveness of the procedures
developed.
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8.2 Stress, Strain and Compliance for Anisotropic Materials
8.2.1 Definitions

In the general theory of elasticity the stress and strain measures are defined as second order
tensors: o and e, respectively. The general representation of these tensors in any Cartesian
coordinate system {z;}, i = 1,2,3 with base vectors e; is of the form (see reference [6]):

o = 04 € ® €; (81)
E = £ € ®6j (82)

The fourth order compliance tensor S is defined by:

Oe
= — 8.3
EP (8.3)
and has a representation
S=Siuleide) @ (ex®e) (8.4)

8.2.2 Transformation Under Rotation of a Coordinate System

Consider two different coordinate systems: {&;} with base é; and {z;} with base e;. Then
the stress tensor o has two different representations in each of these systems, related by the
transformation law:

oy = TikTi0k (3.5)

where the elements of the rotation matrix r;; are defined by
Ti; = e; éJ (86)

Using matrix notation, the above can be expressed as

=,
|
—
i
—
=
}s}
—~
o8]
co
~—

The components of the strain tensor are transformed according to a similar formula
le] = (RIEI(R] (8.9)

Note that matrix notation is used here to emphasize the fact that tensors & and € (defined
as linear operators) remain unchanged and that only their representations change.
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8.2.3 Stress, Strain and Compliance — Technical Notation

In practical applications a slightly different notation is usually introduced to represent stress,
strain and compliance. Instead of the two—dimensional matrices, stress and strain vectors
are introduced:

o = {a} = {011,022,033,012,013,023}T (8.10)
e = {&} = {511»522,5337512,513,523}T (8.11)

The compliance matrix is defined by

Oe
S:-a;

and has, in the most general case, 21 independent components. For cubic systems, which
are of primary interest here, the number of independent constants is equal to 3.

It should be noted that, with the technical notation introduced in the previous section, the
stress vector, strain vector and compliance matrix are not elements of tensor spaces defined
on the three dimensional Euclidean space anymore. Therefore, they do not necessarily
obey the rules relating to objects of these spaces (tensor laws), in particular. the rules
of transformation under rotation equations (8.7) and (8.9). Thus, in technical notation,
boldface symbols represent vectors and matrices. not tensors.

It can be shown, however. that the transformation of the components of the stress and
strain vectors under the rotation of a coordinate system are represented by

and
e =Q: (8.13)

where the matrix @ consists of the appropriate combinations of products of elements of the
rotation matrix JR. Note that, since tensor laws are not valid for the technical notation, the
inverse matrix Q™ is not equal to Q7 and has to be reconstructed from elements of the
matrix RT.

For the compliance matrix, it can be shown that it transforms according to the formula:
S=QSQ! (3.14)

Note that the compliance matrices S and S are non-symetric. The symmetric compliance
matrices are obtained if new measures of strains v;; = 2e;; are introduced into vector e.
However, since this new strain vector requires a different transformation matrix than @ in
(8.13), it will not be used in the computations. If needed, the symmetric compliance matrix
can be easily reconstructed from the matrix S by the use of the formula

$S;; = Siu i=1,23, j=1,...,6

8.15
5S; = 25; 1=4,56 j=1,...,6 (8.15)
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8.2.4 Compliance Matrix in the Local Coordinate System

The compliance matrices have the simplest forms in the local coordinate systems {Z;} as-
sociated with the crystallographic axes of the particular crystal type. In these systems, the
compliance matrices may have as many as 21 independent constants (for triclinic systems)
or as low as two independent constants (for isotropic materials). For cubic systems, which
are of primary interest here, there are three independent constants a1, a2, and aj, located in
S in the following locations:

"al a; ay O 0 0 -|
ay a1 a2 0 0 0
& a; da o 0 0 0 5
S=19 0 0 e 0 O (3:16)
0 0 0 0 3a3 O
00 0 0 0 ja |

In order to clearly represent the number of independent constants and the structure of
the compliance matrix for arbitrary crystal systems, one can introduce a locator matrix L,
so that

S=La (8.17)
[o the above, a is the vector of unknown constants, a = {a, a2, ..an}T and the locator
matrix is a three—dimensional (6 X 6 x n) matrix consisting of the appropriate coeflicients,
with non—zero entries corresponding to actual locations of consecutive elements a,. I1t's form
can easily be reconstructed from the structure of the matrix S. Typical forms of this matrix
for various crystal classes are shown (in the symmetric version °S) in reference {8]. They
are also briefly presented in Appendix C of this report.

8.3 Evaluation of Material Constants for Anisotropic Materials
8.3.1 Basic Formulation

In this section, we will derive a general formula for the calculation of the elastic constants
for anisotropic materials from tensile tests (or other tests with a prescribed stress state).

A typical test is presented in Fig. 8.1: a sample of anisotropic material, with material
axes defined by the coordinate system {2}, is subject toa certain stress state o (usually pure

tension) defined in the coordinate system {z;}. The strains are measured by strain gauges

(or other techniques) aligned with the coordinate systems {:cE“)} where « is the number of a

gauge (single measurement). In general, systems {#:}, {z:} and {zﬁ“’} need not be aligned.
Introducing the transformation matrices:
Q- represeﬁting transformation from {Z;} to {z;} (8.18)
and

Q® — representing transformation from {z;} to {x&a)} (8.19)
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Figure 8.1: A typical test for anisotropic materials.

the formula for measured stress ¢, can be written as:

QS - QSQ e = ¢, (3.20)

where ng; represents the first row of the matrix Q®). Note that the index () in parentheses
indicates quantities associated with measurement number a, but not necessarily measured
i the direction of . In particular, o‘®) is represented in the coordinate system {z, }.

Introducing the locator matrix L to represent the specific crystal class, this equation
becomes

QS QLaQ o™ =, (8.21)
or in the index notation
Qi OmiQ5l ol Lisgag = 2, (8.22)

It can be noted that the unknowns in this equation are material constants a;. For a tensile
test, the stress vector is defined as o = {¢,0,0,0,0, 0} and the above equation can be recast

in a “normalized” version c

Qi QmiQ3 Lijpas = ;% (8.23)

Assuming that a total of m independent measurements are made, the system of equations
used to determine the material constants is of the form

Ka=c¢e (8.24)
or, using index notation:
a :

] I{agag = m (825)
where 8 = 1...n (number of material constants), & = I...m (number of measurements)
and

Kop = Qﬁ‘ﬁmeQnLim (8.26)
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Note that a is a counter for single measurements (strain readings). If several strain
gauges are used on the same sample, then each gauge reading is counted as one measure-
ment providing one piece of information (one equation in (8.24)). If several different samples
are used to determine the material constants for the same crystal, then measurements on
consecutive samples are added as new equations to the system (8.24), with a being an accu-
mulative counter of single measurements (strain readings). Note that in this case, elements
of the matrices Q may change from sample to sample, due to different orientations of the
crystal axes.

8.3.2 Calculation of Material Constants From “Too Many” Experiments

The necessary condition for the system (8.24) to have a unique solution is that the number
of single measurements is at least equal to the number of unknown coefficients m > n. In
practice, the number of single measurements will usually be larger, so that m > n, and the
system (8.24) will be overdetermined (provided that the equations are linearly independent).
For such systems, the exact solution usually does not exist and can be only found in the
approximate sense.

One of the popular methods for the solution of such systems is the least squares method,
based on the minimization of the norm of the residual of the system (8.24):

r=|Ka- el (3.27)

A detailed derivation of this method can be found in reference [5]. Here. we will present only
a final form of the square system of equations to be solved:

(KTK)a=KTe (8.28)
or, in index notation: A
(K.,aKw)ag = K4 it (8.29)

0'(0‘)

8.4 FEvaluation of Stress Components for Anisotropic Materials
8.4.1 Basic Formulation

Calculation of stresses in machine elements from strain gauge measurements is a very typical
operation in structural mechanics. However, for anisotropic materials, this procedure may
be very sensitive to various experimental errors, particularly to misalignments of the strain
gauges.

A typical setup for obtaining measurements is presented in Figure (8.2). The figure
presents a section of an anisotropic body (say, a turbine blade) with the directions of the
crystallographic axes defined by the coordinate system {2:}. At agiven point on the surface
of the body, a local Cartesian coordinate system {z;} is defined, with axes z; and z, tangent
to the surface and axis z3 normal to this surface. In order to measure strains, a number
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Figure 8.2: A typical setup for evaluation of stresses in anisotropic materials from strain
measurements.
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of strain gauges is located on the surface of the body (usually strain gauges are assembled
into strain rosettes). In Figure (8.2), only one gauge, with the associated coordinate system

{::;&“”} is indicated.
The stress-strain relationship in the material coordinate system {Z;} is of the standard

form: .
So=¢ (8.30)

After transformation to the surface coordinate system {z,} the above equation becomes:
QSQ o =¢ (8.31)

where Q represents transformation from {&;} to {z;}. Note that, in the absence of surface
tractions, the stress components on the surface satisfy o3 = 0, ¢ = 1,2,3 so that the essential
non-zero components of stress can be organized into a vector

T = {011,022,012} (8.32)
related to the three-dimensional version by a simple permutation
g, = 5304 (833)

As mentioned before, in order to calculate stress, one performs strain measurements in
various directions on the surface. Each measurement provides one piece of information (one
equation) in the form

QY- Q5Q'Pr ==, (8.34)
where ¢, is a strain measurement in the gauge o. If the total of m strain gauges is used,
then the stresses can be calculated from the system of equations

Koz =e (8.35)
or
[{cxﬁaﬁ = Ea (836)
where ) .
Kop = QE;)QmiSijQ;annﬁ (8.37)
anda=1,...,m, 8=1,2,3. From the structure of a matrix K it can be concluded that the

calculated values of the stresses are sensitive to the precise specification of the orientation
of material axes and the strain gauges. Thus, there may exist certain configuration of the
strain gauges that will minimize this sensitivity and produce the most robust setups. This
question will be addressed in the next section.
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8.5 Optimization of The Strain Gauge Orientation in Tests for
Anisotropic Materials

8.5.1 Problem Statement

Consider the problem of the calculation of the material constants (8.24) or of the calculation
of stresses from strain measurements (8.64). It can be noted, that the actual form of the
coefficient matrix K depends on the orientation of material axes (matrix Q) and strain
gauges for consecutive measurements (matrices Q'®)). Thus, it makes sense to pose the
following problem:

Find a combination of coefficients (in particular, Qi; and ng,‘,z) such that:

1. The system is non-singular:

r(K)=n (8.38)

where 7(K) is the rank of the coefficient matrix, and n is the number of unknown
material constants.

o

The solution of the system is the least sensitive to the variation of the orientation of
material axes or strain gauges (in case of the calculation of stresses, only the latter is
of interest).

The solution to this problem is suggested by the theory sensitivity of linear systems of
equations, presented, for example, in reference [3]. This theory is summarized in the next
section.

8.5.2 Background—Sensitivity Analysis

Consider the system of linear equations:
Ka=25% (8.39)

and suppose that the coefficient matrix K is perturbed by e F’ where F is an arbitrary matrix
such that |F|| = 1 (in the appropriate norm). Then, it can be shown [5] that the sensitivity
of the solution a to the perturbation ¢ satisfies the inequality:

i‘%l“—““ < (K)p(K) +of<?) (8.40)

where a(¢) denotes the solution of a perturbed system of equations and:
k(K) = ||K||||[K™|| = spectral radius of K

g

PK = = norm of the variation of K
1Kl
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If we decide to use the natural square norm | - ||z, then we have |[|[K|. = Tmax(K) and
k(K) = 0max(K)/omin(K) and the sensitivity inequality becomes

la(e) —all2 1
lall2 ~ Omin(K)

In the above, omin(K) is the minimum singular value of the matrix K.

+ o(e?) (8.41)

The calculation of singular values is not a very typical operation and there is no software
readily available for this procedure. Then, it is useful to observe that singular values of K
are defined as square roots of the eigenvalues of KT K, namely

N S VLR N S IR (8.42)

1 1

8.5.3 Optimization of Strain Gauge Orientation and Material Axes

With the background presented in the previous section, it is easy to observe that in order to
satisfy criterion (2) presented in Section 3.81, we need to:

Find a combination of the orientations of the strain gauges and the material ares,
which mazimizes the minimum eigenvalue of the matri KTK.

Note, that the results of this analysis are useful for the satisfaction of criterion (1) - existence
of the solution. This is because the rank of matrix K is equal to the number of nonzero
singular values of K, which, in turn, is equal to the number of nonzero eigenvalues of KTK.
Therefore. the solution to the system exists if the minimum eigenvalue ,\L{}:M is greater
than zero.

To present the above optimization criterion in a more formal way, we denote all the
free optimization parameters by p;,i —1,... K (these may be angles of strain gauges, Miller
indices, etc.). Then, to satisfy criteria (1) and (2), one needs to:

. _ . ~(KTK)
Find {p;} and corresponding A, ~ such that:

X(KTK) = max </\(KTK)> > 0 (3.43)

min (p:} min
It should be noted that this general approach can be used both for the optimization of the
calculation of material constants and the calculation of stresses from strains.
8.5.4 Numerical Procedure

In order to solve the optimization problem (8.43), a variety of procedures may be applied.
In this work, it was assumed that the number of free parameters is small enough and the

i
evaluation of eigenvalue Ai,{}n 8) is cheap enough that a simple searching procedure can be
effectively applied. This procedure is based on two steps:
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1. Scan all the possible values of {p;} with sufficiently small resolution and evaluate, for
T I
each combination, the minimum eigenvalue AE R (using, for example, the Jacobl

method {1]). i

o

Select the combination {7;}, corresponding to the maximum:

Ty
}{K K- max ()\(KTK]>

min min
{pi}

This procedure is general enough to be applied to the optimization of the orientation of
material axes and of location and orientation of strain gauges.

8.6 Numerical Examples

The formulation and procedures, presented above, were the basis for the development of a
computer software package designed to optimize the orientation of strain gauges in tensile
tests and in stress measurements on real samples. In this section, a few selected introductory
examples of this optimization will be presented. It should be noted that the formulation
presented in this section and implemented in the program is very general and can be applied
to any type of crystal as well as to isotropic materials (the differences between various
material classes are restricted to the locator matrix L). For the sake of simplicity and
easy intuitive verification. the examples presented here deal with rather simple classes of
materials, namely isotropic materials and cubic systems.

8.6.1 Optimization of the Calculation of Material Constants

The first example illustrating the correctness of the procedure is the calculation of material
constants for an isotropic material from tensile tests (Fig. 8.3). In this case. there are
two independent material constants, so it suffices to consider one sample with two strain
gauges. In order to test the optimization procedure, we assume that the orientations of both
gauges are unknown, so there are two independent optimization parameters. namely the
angles a; and ay. After application of the optimization procedure, the calculated optimal
configuration of the strain gauges ist oy = 0,00 = 90 (or any equivalent configuration). At
this configuration, the calculation of material constants is the least sensitive to alignment
errors, a result that intuitively seems to be correct. This optimal configuration is presented
in Fig. 8.3b. The same configuration is obtained if the three gauge rosette presented in
Fig. 8.3c is considered. In this case, there is one optimization parameter (angle a) and the
optimal orientation is a = 0 (or, equivalently, o = 90, 180, etc.). In another analysis for this
material, a triangular strain rosette presented in Fig. 8.3d was considered. This rosette has
one optimization parameter, namely the rotation angle a. The results of the optimization
analysis indicate that if the triangle is equilateral, then all the configurations are equivalent,
i.e.. sensitivity of results to misalignments of « is the same {and rather low) at any position
of the rosette.
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Figure 8.3: Optimization of strain gauges for isotropic material. (a) general configuration,
(b) optimal configuration of two gauges, (c) optimal configuration of a rosette, and (d)
configuration of a triangular rosette.
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Figure 8.4: optimization of strain gauges for cubic syngony. (a) configuration of a triangular
rosette and (b) three independent strain gauges.

The single crystal alloys used in the manufacturing of turbine blades are usually of cubic
syngony. For this crvstal system, there are three independent material constants, so that a
minimum of three measurements (strain gauges) are necessary. Thus, as the first example,
we considered one sample with the material axes aligned with the edges of a sample and
with the direction of tension (Fig. 8.4) (Miller indices for consecutive sample axes were:
< 100 >, < 010 >, < 001 >). The first optimization case considered was a triangular
rosette with one optimization parameter, the angle o (Fig. 8.4a). The answer obtained
in this case is that there exists no configuration of the rosette that can provide sufficient
information (the system of equations is always singular). The same result was obtained even
if three or more independent strain gauges were considered (Fig. 8.4b). The explanation
of this result is simple: one of the independent material constants for the cubic system
is the shear modulus and, for the perfectly aligned crystal configuration presented in Fig.
8.4, a tensile test does not produce any shear mode of deformation. Thus, there exists no
information available to calculate the shear modulus.

As the next case we considered two samples of cubic structure: the one analyzed before
and a second sample, with Miller indices corresponding to the primary, secondary and tertiary
axes < 1,1,1 >, < 1,2,-3 >, and < —5,4,1 >, respectively. In each sample, a two-gauge
rosette was used, with both the location (face 1 or 2) and the orientation (angle ) considered
as optirhization parameters. The solution obtained in this case is presented in Fig. 8.53a (both
angles are equal to zero). If three-gauge rosettes are considered, the optimal configuration is
slightly different (see Fig. 8.5b). In this case, the optimum angles are o; = 20°, @, = 0 with

81



A X, Lx L A x

<1,00 <1,1,1> <1,0,0» <L

Facge | Face | Face | Face |

a =20l

)

Figure 8.3: Optimization of strain gauges for cubic syngony. (a) optimal configuration of
two-gauge rosettes and (b) optimal configuration of three-gauge rosettes.

the location of gauges as presented in Fig. 8.5b. Note that in order to calculate the optimal
configuration, all the samples have to be considered simultaneously, because the results are
“coupled.” For example, if the Miller indices of sample 2 of Fig. 5b were changed, then the
optimum orientation of the rosette in sample 1 would be different from the above example.

These simple examples illustrate the basics of the optimization procedure and the type of
results obtainable. As previously mentioned, it is possible with this formulation to consider
more complex crystal classes than cubic, since the procedure developed here 1s completely
general.

8.6.2 Optimization of Calculation of Stresses from Strain Measurements

As an example of calculation of stresses from strain measurements, let us consider a sample
of the material of cubic syngony, presented in Fig. 8.6.

The axes of the material coordinate system {i;} are defined by three vectors represented
in the reference coordinate system E* as:

€, = {0., 0.3162, -—0.9487}

6; = {0., 0.9487, 0.3162}
3 {1, o, 0}

9}
w
I

The three independent constants for the cubic material are a; = 1.0 x 107%, a3 = —0.3 %

S2

!
¥ —: N ¥ y -



Figure 8.6: Optimization of orientation of strain rosette for the evaluation of stress in
anisotropic samples.
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1078, a3 = 4.0 x 1079, so that the symmetric compliance matrix defined in the material
coordinate system is of the form

T 10 —-03 -03 0 0 O |
03 1.0 —-03 0 0 O
. 03 —-03 1.0 0 0 O
S _ -6
S=107Xx1 4 g 9 40 0 0
0 0 0 0 40 0
0 0 0 0 0 4.0 |

The coordinate system {z;}, in which stresses will be calculated, is defined by three
vectors e;, t = 1,2, 3, specified as:

e, = {05774, —0.2573, 0.7715}
e, = {05774, —0.5345, —0.6172}
es = {05744, 0.8018, —0.1543}

The strains are measured by a three gauge strain rosette, presented in Fig. 8.6. The
orientation of this rosette is an optimization parameter in this case.

After the execution of the optimization version of the OPTAM-S code, the optimal value
of the angle o was calculated to be 95°, which corresponds to the orientation presented In
Fig. 8.6.

For the configuration obtained from the optimization run, a stress calculation version of
the code was executed, with strain readings corresponding to consecutive gauges of the rosette
being: <M = 0.01, =\ = 0.0035, =3 = —0.003. The calculated non-zero components of
the stress tensor are: oq; = 296.7, o1 = —524.8, 09 = 6986.3.
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A Appendix — Description of Spar Reference Manual
Updates

A.1 Tab Processor Updates

A new TAB sub—processor, SMAT, was created to provide an alternative to using AUS/TABLE
to generate material flexibility coefficients (compliance matrices) for use with solid elements.

Based on inputs provided by the user, SMAT generates entries in PROP BTAB 2 21 as
required by ELD when using solid elements. SMAT may be used with the previously existing
solid element types S41, S61, and S81 as well as with the new element types S42 and S82.

The input required by SMAT is listed below. The detailed description of this input is
given in Appendix B.

n,w,nref

Ey, By Es

G2, Gr3, Goa

Uiz, Vi3, V23

(DIRCOS) (1,J),J =1,3)

(DIRCOS) (2,J),J =1,3) input only if nref = 0, or blank
(DIRCOS) (3,J),J = 1,3)

Qpy Oy, O

Yzz:a Yyya Yzz7 yz:ya yy:a }/zz‘

A.2 ELD Processor Updates

ELD was modified to accept for the new solid element types S42 and S82. These element
types represent the COMCO three-dimensional anisotropic hybrid stress elements.

The S42 and S82 element material properties are obtained from the SPAR data set PROP
BTAB 2 21 as with the other solid element types. This data set may be constructed with
the AUS processor as before or with the new TAB subprocessor, SMAT.

The system diagonal mass matrix, DEM, produced by the processor E includes terms
for S42 and S82 element types. No consistent mass matrix is available for any of the solid
element types at this time.

The same mesh generation capabilities exist for the 582 element as for the S81 element,
i.e., the hexahedral element network generator.
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A.3 EKS Processor Updates

Modifications were made to EKS, the element intrinsic stiffness and stress matrix generator,
to incorporate the 542 and S82 element types.

Although the changes to FKS are transparent to the user, the bulk of the SPAR updates
were associated with EKS. The COMCO code was modified, adapted to the SPAR format,
and incorporated into EKS such that the intrinsic stiffness matrices inserted into the element
information packets were compatible with K, the system stiffness matrix generator. No
modifications to K were required.

The E processor now generates the data sets “S42 EFIL” and «gg2 EFIL,” which contain
the element information packets for the S42 and S82 elements, respectively. E also generates
the system diagonal mass matrix, DEM, which contains terms for S42 and 982 elements.
However, no modifications were required to E.

A.4 GSF/PSF Processor Updates

GSF was updated to generate stress data sets for the new S4?2 and S82 elements. Output
data sets are named «GTRS $42 iset ncon” and “STRS S382 iset ncon,” respectively, which
is consistent with data sets produced for other element types.

Control cards designating S42 and S82 elements may be included in GSF input as de-
scribed in the SPAR Reference Manual, Ref. 1. If control cards of this kind are not given.
stresses will be computed for all elements, including 542 and S82 elements.

No updates were made to PSF. A problem with the stress display at the corners of 532
which was present in the initial version of the code has now been corrected. Namely, the
stress values printed for the element corners are now evaluated at the element COINers instead
of the integration points as was the case in the earlier code version.

A.5 Plot Processor Updates

GGS and PLTTEX were updated to recognize and plot the new 542 and S82 elements. These
clements may be selected by element type, group, and index, or will be included if “ALL” 1s
specified.

A.6 EADS Data Sets

The SPAR modifications have been fully implemented on the NASA/MSFC EADS computer

system. The current source codes reside in the following data sets:
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TAB
EDS
EKS
GSF
GGS

CMLP410.SPAR.FORT(PRGTAB)
CMLP410.SPAR.FORT(PRGELD)
CMLP410.SPAR.FORT(PRGEKS)
CMLP410.SPAR.FORT(PRGGSF)
CMLP410.SPAR.FPRT(PRGGGS)

( )

PLTTEX CMLP410.SPAR.FORT(PLTTEX
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APPENDIX B - SPAR REFERENCE MANUAL — (CONTENTS)

Section  Foreward
1 Introduction
1.1 New User Orientation
1.2 SPAR Overview
2 Basic Information
2.1 Reference Frame Terminology
2.2 The Data Complex
2.3 Card Input Rules
2.3.1 Equivalence of Word Terminators
73.2  Continuation Cards
2.3.3 Loop-Limit Format
2 4 Reset Controls, Core size control, and the Online command
2.5 Data set structure
2.5.1 TABLE
2.5.2 SYSVEC
2.5.3 ELDATA
2.6 Error Messages
3 Structure Definition
3.1 TAB - Basic Table Inputs

3.1.1 Text

3.1.2 Material Constants (MATC)
3.1.3 Distributed Weight (NSW)
3.1.4 Alternate Reference Frames (ALTREF)
3.1.5 Joint Locations (JLOC)
3.1.6 Joint Reference Frames (JREF)
3.1.7 Beam Orientation (MREF)
3.1.8 Beam Rigid Links (BRL)
3.1.9 E21 Section Properties (BA)
3.1.10 E22, E25 Section Properties (BB)
3.1.11 E23 Section Properties (BC)
3.1.12 E24 Section Properties (BD)
3.1.13 Shell Section Properties (SA)
3.1.14 Panel Section Properties (SB)
3.1.15 Constraint Definition (CON)
3.1.16 Joint Elimination Sequence (JSEQ)
3.1.17 Rigid Masses (RMASS)
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3.1.18 Solid Element Materials

TABLE 1-1:  SPAR Element Repertoire.

NAME DESCRIPTION

E21

E22

E23
E24
E25

E31
E32
E33
E41
E42
E43
E44

S41
S42
S61
S81
§82

F41
Fo6l
F81

Notes:

General straight beam elements such as channels,
wide—flanges, angles, tubes, zees, €tcC.

Beams for which the intrinsic stiffness matrix is
given.

Bar — Axial stiffness only.

Plane beam.

Zero-length element used to elastically connect
geometrically coincident joints.
Two—dimensional (area) elements:

Triangular membrane

Triangular plate.

Triangular combined membrane and bending element.
Quadrilateral membrane.

Quadrilateral plate.

Quadrilateral combined membrane and bending element.
Quadrilateral shear panel.

Three—dimensional solids:

Tetrahedron (pyramid).

4—node tetrahedral hybrid (COMCO)
Pentahedron (wedge).

Hexahedron (brick).

8—node anisotropic hybrid (COMCO)
Compressible fluid elements:

Tetrahedron (pyramid).

Pentahedron (wedge).

Hexahedron (brick).

— See Section 7.2 for examples of stress output.
— See Volume 2 (Theory) for element formulation details.

_ Aeolotropic constitutive relations permitted, all area elements.

—Laminated cross sections permitted for E33, E43.
— Membrane/bending coupling permitted for E33, E43.
_ E41, E42, E43, E44 may be warped.
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See Volume 1
Sections:

3.1.7-9
3.1.10
3.1.11
3.1.12

3.1.10

3.1.13

3.1.14
3.2.23
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— Aeolotropic constitutive relations permitted for 3-D solids.
— Non-structural mass permitted for line and area elements.
3.1.18 Solid Element Materials (SMAT)

Based on inputs provided by the user, SMAT generates entries in PROP BTAB 2 21 as required by
ELD when using solid elements. A description of the contents of each input record to SMAT

follows.
n, w, nref
E, E, E;
GIZJ Gl3’ GZJ
Vi, Vizr Va3
(DIRCOS (1,J),J =1, 3)
(DIRCOS (2,J),J =1, 3) input only if nref=0, or blank
(DIRCOS (3,J),J =1, 3)
o, o, o,
Yix, Yyy, Yz, Yy, Yy, Yox
where
n = the material constant entry
w = weight density (weight/unit volume)

nref = Alternate Reference Frame (see ALTREF)

If nref >0, frame nref specifies material orientation relative to the element axes.
If nref = 0, this orientation is given by DIRCOS values.

E, = Modulus of elasticity in material direction — 1
E, = Modulus of elasticity in material direction — 2
E, = Modulus of elasticity in mateial direction —3

G,, = Shear modulus in 1-2 plane
G,; = Shear modulus in 1-3 plane
G,; = Shear modulus in 2-3 plane

v,, = Poisson’s ratio of comp in dir-2 to tension in dir-1
v,; = Poisonn’s ratio of comp in dir-3 to tension in dir-1
v,; = Poisson’s ratio of comp in dir-3 to tension in dir-2

DIRCOS (I.)) Direction cosine matrix relating the material axis—i to the element axis-j.
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o, &, 0 = Linear thermal expansion coefficients
Yix Yyy Yor Yoy Yy, Y,, = reference or yield stress for use in stress displays.
See PSF.
EXAMPLE:
Z
A
3
1
3 30
—» X
E =&, = 30X 1C8
E, = 30 X103
-Y
(-2) G, = 15X 108
G, =Gy = 15 X105
V’.Z = V‘[J = sz = 3
or
SMAT: 1 .283
30.+6,30.+6,30.+5 ALTREF: 2 2,-30.
15.+6,15.45,15.+5
0.3,0.3,0.3 SMAT: 1 283 2
0.866,0.000,0.500 30.46,30.+6,30.45
0.000,1.000,0.000 15.46,15.+5,15.+5
—-.500,0.000,0.866 0.3,0.3,0.3
0.,0.,0. 0.,0.,0.
1.,1.,1.,1.,1.,1. 1.,1.,1.,1.,1.,1.
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3.2.2.3 Three-Dimensional Elements

Only one table pointer, NSECT (or the synonym NPROP), applies. The default value of
NSECT is 1. For fluid elements, NSECT points to a line in a table named PROP BTAB 2 20.
For solids, NSECT points to a line in PROP BTAB 2 21. Before executing ELD, the user
must construct these tables via AUS/TABLE, as indicated below. Mesh generation facilities
are described at the end of this section.
Fluid elements F41, F61, F81:
For additional information see Section 12. It should be noted that FSM is the only processor
which produces system matrices containing fluid element terms. Fluid element terms are not
included in the system diagonal mass matrix, DEM, produced by processor E, nor in the
system matrices produced by K, M, or KG. No form of static temperature, dislocational, or
pressure loading is defined for fluid elements. GSF produces no stress data for fluid elements.
Section properties are defined as follows:
@XQT AUS
TABLE(NI = 2, NJ = the number of different fluids): PROP BTAB 220
J=1:p, B $ Mass density, bulk modulus for fluid 1.
J=2:p, B $ Massdensity, bulk modulus for fluid 2.

Solid elements S41, 542, S61, S81, §82 .
Solid element terms are included in the system diagonal mass matrix, DEM, produced by E,
and in the system matrices produced by K and M, but not those produced by KG. Properties
are defined as follows:
@XQT AUS
TABLE (VI = 31, NJ =number of different solids): PROPBTAB 2 21
J=1$ Properties of material 1 follow.
w>
a,;;>
@ >
4 G &3>
A Gy G5 G
G, Gs; Gs3 Gsq Q55>
Gs; G52 Og3 Goq Gss o5
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o,

a,>

Yxx Yyy Yzz ny sz sz$

J =28

Properties of material 2 follow. (Same sequence as above).
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Appendix C

Compliance Matrices for Various Crystal Classes
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C Appendix—Compliance Matrices for Various Crys-
tal Classes

In this appendix, the specific forms of compliance matrices and independent material con-
stants are presented. The compliance matrices presented here are of the symmetric form

5§ is obtained when the engineering strain measures A;; = 2e;;,1 # ) are used in the strain
vector. Note that the nonsymmetric compliance matrices S, corresponding to the use of
strain measures &;;, can be easily calculated according to the formula:

Sy = 5SSy i=1,23 j=1,....6

SU — % 551’]' 1:4,5~6 J:1,6

The independent material constants and compliance matrices for various types of crystal
classes are listed below:

TRICLINIC - classes 1,2

For the material of triclinic structure in classes 1,2, there exists 21 independent compliance
constants day, . ... ay;. The location of these constants in the symmetric compliance matrix

is defined by:
aq (Ls adg a4 as dg
ar asg a9 4o An

aip 13 414 415

S¢ _
S= dig a7 a1
a19 a20
L asr |

MONOCLINIC - classes 3-5

For the material of monoclinic structure in classes 3-5, there exists 13 independent com-
pliance constants ay, ..., as. The location of these constants in the symmetric compliance
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matrix is defined by:
ay drf Qg 0 0 g
ay dyp 0 0 a1

as 0 0 ai2

SS —
ay dadi3 0
Qs O
as

ORTHORHOMBIC - classes 6-8

For the material of orthorhombic structure in classes 6-3. there exists eight independent
compliance constants ay,....as. The location of these constants in the symmetric compliance
matrix is defined by:

ap a- ar 0 0 0
as g 0 0
Sg az 0 0 0
ag 0 0
as 0
L s

TETRAGONAL - classes 9-11

For the material of tetragonal structure in classes 9-11, there exists seven independent
compliance constants ay,...,a-. Thelocation of these constants in the symmetric compliance
matrix is defined by:

[ w1 as as 0 0 ar |
a, a 0 0 —ar
Sg a, 0 0 0
az 0 0
as
L ag

TETRAGONAL - classes 12-15

For the material of tetragonal structure in classes 12-15, there exists six independent com-
pliance constants ai,...,as. The location of these constants in the symmetric compliance
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matrix is defined by:

[a; as ae 0 0 |
a, a¢ 0 0 O
Sg asg 0 0
az 0 O
as; 0
L aq |

TRIGONAL-HEXAGONAL - classes 16-17

For the material of trigonal-hexagonal structure in classes 16-17, there exists eight inde-
pendent compliance constants ap,...,ds. The location of these constants in the symmetric
compliance matrix is defined by:

a, a4 0as dg —dar7
a; ds —dag ag
Sg - a0 0
a3 0 2ag
as dag
L 2(ay — ay)

TRIGONAL-HEXAGONAL - classes 18-20

For the material of trigonal-hexagonal structure in classes 158-20, there exist six independent
compliance constants ¢y, ..., ds- The location of these constants in the symmetric compliance
matrix is defined by:

ay aq as as O 0
a; as —ag U 0
Sg = as 0 0 0
az 0 0
as 2ag
i 2(a) — a4)

TRIGONAL-HEXAGONAL - classes 21-27

For the material of trigonal-hexagonal structure in classes 21-27, there exist five independent
compliance constants ay, ..., 1s. The location of these constants in the symmetric compliance
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matrix is defined by:

a, a4 as 0 0
a, as 0 0
Sg - az 0 O 0
as 0 0
as 0
L 2(ay — a4) ]

CUBIC - classes 28-32

For the material of cubic structure there exist three independent compliance constants ay. a;
and as. Their inderpretation in terms of Young modulus £, Poisson’s ratio v and shear
modulus G is given by:

1
a = E
1
ay = ——=
) vE
1
ads = a

The location of material constants in the symmetric compliance matrix is defined by:

ap a; a; 0 0 O
a, a 0 0 O
Sg— a; 0 0 O
as 0 O
az 0O
L as J

ISOTROPIC

For the isotropic material there exist two independent compliance constants a; and a,. Their
interpretation in terms of Young modulus E and Poisson’s ratio v is:

a =

1
E
1

a, = ——=

vE
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The location of material constants in the symmetric compliance matrix is defined by:

- -

a; a; a2 0 0 0
ay ag 0 0 0
Sg - a 0 0 0
2(a1 — aq) 0 0
2(a; — az) 0
i 2(ay — az) |

A more detailed discussion of crystal structure and compliance matrices for various crystal
classes can be found in reference [8].

LOCATOR MATRICES

The non-zero elements of the locator matrices L for each of the compliance matrices can
be easily reconstructed by considering consecurive independent material constants ag and
observing that L,j; is the coefficient in matrix S;; corresponding to the constant aj. For
example, for isotropic material, the “layer” of the compliance matrix corresponding to a, 1s

1000 0 0]
010000
. 001000
S
Ll =
[PLad =15 6 0 2 0 0
000020
(00000 2]
and the “layer” corresponding to az is
0011 0 0 0]
1 00 O 0 0
. 110 0 0 O
[ " Lij .
000 -2 0 0
000 0 -2 0
(000 0 0 2]
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